NH
& JOURNAL OF

\$ e T VAR
@ GEOMETRY ao>

PHYSICS
ELSEVIER Journal of Geometry and Physics 43 (2002) 93-132

www elsevier.com/locate/jgp

Hamiltonian field theory
Olga Krupkova

Mathematical Institute, Silesian University,
Bezri€ovo nam. 13, 746 01 Opava, Czech Republic

Received 14 May 2001; received in revised form 8 October 2001

Abstract

In this paper, a general Hamiltonian theory for Lagrangian systems on fibred manifolds is pro-
posed. The concept ofleepageann + 1)-formis defined (where is the dimension of the base
manifold), generalizing Krupka’'s concept of a Lepagedorm. Lepagearin + 1)-forms are used
to study Lagrangian and Hamiltonian systems. Innovations and new results concern the follow-
ing: aLagrangian systeris considered as agquivalence classf local Lagrangians (of all orders
starting from a minimal one); Blamiltonian systenis associated with an Euler—Lagrange form
(not with a particular Lagrangianiamilton equationsre based upon a Lepage@+ 1)-form,
and cover Hamilton—De Donder equations (which are based upon the exterior derivative of the
Poincaré—Cartan form) as a special case. First-order Hamiltonian systems, namely those carying
higher-degree contact components of the corresponding Lepagean forms, are studied in detail. The
presented geometric setting leads to a new (more general than the standard one) understanding of
the concepts afegularity andLegendre transformatioim the calculus of variations, relating them
directly to the properties of the arisiegterior differential system#n this way, newegularity con-
ditionsandLegendre transformation formulase obtained, depending on a Lepagéa# 1)-form,

i.e., related with the correspondifgiler—Lagrange form
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1. Introduction

The aim of this paper is to propose a general differential geometric setting for the Hamil-
tonian field theory in fibred manifolds. Geometric formulations of Hamilton equations in
field theory as a part of the calculus of variations on fibred manifolds are connected with the
names of many authors (dfL,5-8,12,13,16-20,22,23,29,30,35-37,43,47-52,55a68)]
references herein).

Our approach is different from the usual one, and leads to a more general setting which
covers the Hamilton—De Donder theoo§ the calculus of variationas a special case
Moreover, it can be seen asifying and further generalizing different approaches to the
Hamilton theory: the “standard” one which goes back to Goldschmidt and Sterj@fgrg
with several “nonstandard” onefs(43], and the very recent by Krupkova and Smetanova
[49,50). Main differences and results are the following:

(1) Lepagear(n + 1)-form. The key concept in our formulation of Lagrangian and Hamil-
tonian theories is that of Bepagean(n + 1)-form (wheren is the dimension of the
base manifold). Lepagean + 1)-forms represent a generalization(io+ 1)-forms
of the fundamental concept of the calculus of variations on fibred manifoldstethe
agean n-formintroduced by Krupka in 197@81] (see alsd32,35,38,41for further
results). While Krupka's Lepageanforms are counterparts bhgrangianglike, e.g.,
the famous Poincaré—Cartan form which is a particular case of a Lepagfeam),
Lepagean(n + 1)-forms introduced in this paper are counterpartEoler—Lagrange
forms(cf. Lepagean 2-forms in mechanig&l—46)).

(2) Lagrangian systemUsually, by a Lagrangian systemgéobal Lagrangianis under-
stood. In this paper (similarly to our previous work concerning mechda&s46)),
the definition is more general, introducing a Lagrangian system eguinalence class
of Lepagean(n + 1)-forms Thus, by a Lagrangian system, we meanfteily of all
equivalent Lagrangian§.e., Lagrangians whose Euler-Lagrange forms coincide). It
should be noted that the equivalence class contains local Lagrangians of all finite orders
starting from a certain minimal one; moreover, in general, a global Lagrangian need not
exist—the obstructions lie in the topology of the total space of the underlying fibred
manifold (sed2,9,39,59-61hnd others). A similar approach to Lagrangian systems is
applied in[24,26]

(3) Hamiltonian systemContrary to the usual procedure when a Hamiltonian system
is associated with a Lagrangian, we define a Hamiltonian system to be a Lepagean
(n + 1)-form. In this way, a Hamiltonian system is associated witfcater—Lagrange
form (not with a particular Lagrangiaj i.e., it is the samefor all the equivalent
Lagrangians. This approach supports the idea that the concept of a Hamiltonian sys-
tem should reflect only those properties of the corresponding Lagrangians, which are
directly related with th&lynamics Consequently, the most important physical charac-
teristics of Hamiltonian systems, i.ddamiltoniansand momenta refer to the whole
class of equivalent Lagrangians

By definition, to every Hamiltonian system one has a uniquely determined
Lagrangian system. On the other hand, since a Lepageanl)-form is determined
by an Euler-Lagrange forras well asby auxiliary (upon the Euler—Lagrange form



(4)

(®)

(6)

()

O. Krupkowa/ Journal of Geometry and Physics 43 (2002) 93-132 95

independent) terms, one hamnyHamiltonian systems associated with a Lagrangian
system.
Hamilton equationsFirst, we adopt the approach of Goldschmidt and Sternfa&iy
to understand Hamilton equations as equationséations of a prolongationf the
underlying fibred manifold. Within this approach, Hamilton equations are defined in-
trinsically, and without any a priori assumption on “regularity”, or existence of “Leg-
endre transformation”. Moreover, Hamilton equations appear axgamsionof the
Euler-Lagrange equations, and regularity and existence of a proper Legendre transfor-
mation become an additional property of these equations, which can be specified from
geometric requirements.

Next, we develop the idea of DedeckBl and Krupkd36] that Hamilton equations
related with a Lagrangian could be more generally considered to be based ggon a
eral Lepagean equivalent of a Lagrangian, not only upon its Poincaré—Cartan form, as
usually done. In our setting, Hamilton equations become equations for integral sections
of aHamilton exterior differential system arising from a Lepagéan- 1)-form, and as
such, they become a counterpart of Exder—Lagrange equation®ot of a particular
Lagrangian). Moreover (similarly as within the approach suggested by Dedétker
they depend not only upon the Lagrangian system itself, but also upon higher-degree
contact components of the corresponding Lepagean 1)-form.
In this paperregularity and Legendre transformatiofor a Hamiltonian system are
defined in a geometrical way to Ipeoperties of the corresponding Hamilton exterior
differential systemFrom such a definition, we derivegularity conditionsandLeg-
endre transformation formulashich depend on th&uler—Lagrange forn{not on a
particular Lagrangiangand on thehigher-degree contact ternis the corresponding
Lepagear(n + 1)-form. Expressing the regularity conditions and the Legendre trans-
formation formulas by means of individual Lagrangians, one gets expressions which
may differ from the standard ones. As we show, the presented geometrical concept of
regularity brings a unified look at different regularity conditions which have appeared
in the literature (the standard one, as well as thod®,43,49). On the other hand,
our Legendre transformation differs from that proposed by DedecKétiinowever,
if applied to first-order Lagrangians, it contains both the standard Legendre transfor-
mation formulas and those proposed by Krupkova and Smetda6y.&Similarly, for
second-order Lagrangians affine in the second derivatives, we recover the formulas
discovered by Krupka and &tankovg43].
Strong regularity For general first-order Hamiltonian systems regularity is not sufficient
to guarantee aijective correspondence between extremals and Hamilton extremals.
Therefore, the need to studyuivalencebetween the Hamilton and Euler—Lagrange
equations leads to the concepstbng regularity We show that for Hamilton—De Don-
der systems regularity and strong regularity coincide. For general Hamiltonian systems,
we find conditions for strong regularity and show relations between strong regularity
and existence of Legendre transformations.
Regularization The generalized setting for the Hamilton theory suggesisw under-
standing of the role of regularity, Legendre transformatiand Hamilton equations
in the calculus of variationsNamely, higher-degree contact terms which appear in
the generalized Hamilton equations can be considered as “parameters” giving one the
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possibility to search foappropriate Hamilton equations (i.e., regular and admitting

Legendre transformation) for a given variational problem. From this point of view, we

studyregularizationsof some interesting Lagrangians (namely, Lagrangédfiseor
quadratic in the first derivativeandaffine in the second derivativest turns out that

these examples cover all physically interesting Lagrangian systems (among them the
Dirac field, the scalar field, the electromagnetic field, gravity). It should be mentioned
that the possibility of “regularizing” a Lagrangian by means of choosing an appropriate

“Lepagean equivalent” has been first noticed by Dedeckgs]in

The plan of the paper is as follows. $®ction 2we recall notations and some preliminary
facts on horizontal and contact forms on jet prolongations of fibred manifskigion 3s

a review of the Hamilton—De Donder theory. Since, on one hand, this theory is considered

to be standard (and, as such, subject of basic monographs—cf18]g.and, on the other
hand, not quite satisfactory (¢#,22,56), and since there exist a few different approaches

leading to “nonstandard” results which are less known but interesting from the point of

view of applications in physics (cf5,16,28,43], this section is included as a motivation.

The core of the paper Bection 4vhere our setting is explained, new results are stated, and

links to known results are mentioned. We concentrate oursdifsiborder Hamiltonian
systemgwhich in this approach concern also soseeond-order LagrangiafsThe theory
can be generalized to the higher-order in a quite straightforward4ra%8].

2. Notations and preliminaries

Throughout the paper, : Y — X is afibred manifoldwith a baseX, dimX = n, and a
total space¥, dimY = n + m. For everyx € X, the submanifoldr ~1(x) € Y is called a
fibre overx. We denote by 'V, v), ¥ = (x, y°) afibred chart orY. A (smooth) mapping
y . U — Y, whereU is an open subset of is called asectionof the fibred manifold
w if m oy = idy. Fors > 1, thes-jet prolongationof a fibred manifoldr is denoted
by ny : J°Y — X. Thes-jet prolongation of a sectiop of = is denoted by y; itis a
section ofr,. A sections of zg is calledholonomicif there exists a sectiop of 7 such
thats = J%y. To every fibred chartV, ), v = (x', y*) onx there exists the so-called
associated chawn J* Y, denoted by Vi, vy), ¥s = (x', y°, yZ"'jk)’ whereV; = nsf()l(V),
l<o<mandl<k <s,1<j1<j2<---<jix <n. Byms Where0<k < s, we
denote the natural fibred projections,; : J°Y — JtY.

A vector fieldé on J9Y is calledr,-vertical if Tx, - £ = 0. The bundle ofzr,-vertical
vectors is obviously a subbundle of the tangent buridte’; it will be denoted byV .
In an analogous way, one defines the concept of gvertical vector field onJ*Y for
0 < k < 5. Thes-jet prolongationof a -vertical vector fieldk onY is denoted by/*¢; it
is a vector field or/*Y.

Denote byA?(J°Y) the module of-forms onJ*Y over the ring of functions. A form
n € AY(J°Y) is calledn; ;-projectableif there exists a fornmg € A9(J*Y) such that
7o = n; the formng is then called ther, x-projectionof . A form n € A9(J*Y) is
called zzs-horizontalif ign = O for everyrn,-vertical vector fields on J°Y. Similarly, a
formn € A1(J°Y) is calledr, x-horizontal O < k < s, if izn = O for everyrn, y-vertical
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vector fields on J*Y. The module ofz;-horizontal (respectivelys x-horizontal)g-forms
onJ*Y isasubmodule ofi? (J5Y) and is denoted by&X(J‘ Y) (respectlvely,AjkY(Js Y)).
We denote by: the horizontalizationof differential forms 4 is an R-linear, wedge product
preserving mapping, assigningfoc A4(J*Y) aformhn € Aq(Jle), and is defined
by the formulas

hdx! = dx’, h dy}yl“'./k = y;’l__,jk,- dxf, O0<k<s, hf=fomy1y.

We can see that

hdf =d; fdx', dif = 8f +Z o o i

Apparently, forg > dimX, hn = 0. Aformn € A9(J%Y), ¢ > O, is calledcontactif
J*y*n = 0 for every sectiory of =. Obviously,n is contact if and only itin = 0. For
s > 1 denote

o _ o o i
Oy = DG = Vipoju X (2.1)

wherel<o <m,0<k<s-—1,j1,...,jxk =1, 2,...n. The above (local) 1-forms are
contact forms ory*Y. It is worthwhile to note that

(dx', a)]l Jk,dyjlj) O<k<s-1, 1<jp=<---<js<n (2.2)
is abasis of linear formsn V; C J5Y. Note that

a = _—dv? .. L — 0 .. i
da)jr--jk - dy]l"'lkl A dx WOjyoeejui N dx’.

According to[40], the ideal of contact forms oi°Y, called thecontact idea] is locally
generated by the forms’, “’11 , a)" , dw? . The contactideal plays an impor-
tant role in the calculus of var|at|0ns and the tﬁeory of differential equations on manifolds,
since it enables one to “recognize” holonomic sectignsections of a fibred manifoldr,

is holonomic if and only if it is an integral section of the contact ideal/éi .

The definition of a contact form implies that everyform n on J°Y, whereq > n is
contact. Let us turn to a “softer” classification of contact forms, suggested by the fibred
structure. Lety > 1, and let) € AqHY(JSY) be acontactform. We say thay is 1-contact
if for each-vertical vector fielce on J*Y the (¢ — 1)-form ign is 7s-horizontal; we say
thatn isk-contact2 < k < ¢, if ig p is (k —1)-contac{35]. In this context, horizontal forms
are also called @ontact Hence,y is i-contact if and only if each term in its coordinate
expression with respect to a bags?) containexactly: of the 1-contact linear form®.1).

The following is a basic theorem on the structure of forms on fibred manifolds.

Decomposition theorem(Krupka[35]) Everyn € AJA 1Y(JSY) is uniquely decompos-
able in the formy = no 4+ n1 + --- + 0y, wheren;, 0 < i < ¢, is ai-contact form on
J5Y

If n; is thei-contact part of;, we writen; = p;n. In this way, foreveryg-form n on
J*Y, we obtain a unigue invariant decomposition

Tl = hn+ pin+ -+ pgn (2.3)
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into a sum of a horizontal form andcontacty-forms, 1< i < ¢. This formula is funda-
mental for our computations and will be frequently used throughout the paper.
In what follows, we shall use the following notations:

wo=dxt AdxZ Ao AdX", Wi = i1 @0,

Wiy...jj = ié)/é)xil Wigip_qgs 251 = n. (2.4)

Note that d’ A w; = 8§wo, de! A o = Stw; — 8§wk, etc.

3. A brief review of Hamilton—-De Donder theory
3.1. First-order Lagrangians

Inspired by the work of De Dond¢t0], Golschmidt and SternbefgQ] in their famous
paper set geometric foundations of a Hamilton theory on fibred manifolds, which is known
as theHamilton—De Donder theoryMain ideas can be very briefly summarized as follows.

Consider a fibred manifold : ¥ — X, dimX = n, dimY = m + n, and its first jet
prolongationr; : J1Y — X. Let be a first-order Lagrangian, i.e., a horizontaform
on J1Y, andg, thePoincaré—Cartan fornof A [14,20,31] In a fibred char(V, ), ¢ =
(x', y?) onY one gets. = Lwo, whereL is a function omlfé(V), and

oL
Gk:Lwo—i—ay—qw(’/\a)j. (31)
J
A sectiony of r, defined on an open subdéte X, is called arextremalof the Lagrangian

A (over a compact-dimensional submanifold2 c X with boundaryd £2) if for every
m-vertical vector fielk onY,

/ Jty*d,00 = 0. (3.2)
2

By a direct computation, one gets that U — Y is an extremal of if and only if

Jl'}/*ijlg do, = 0 for everyr-vertical vector fieldt onY. (3.3)

Eq. (3.3)is an intrinsic version of thEuler—Lagrange equations A; in fibred coordinates
it takes the familiar form ofn second-order PDE for the components/of

aL L
<—G - dj—(,) o J%y =0. (3.4)
ay ayj

Goldschmidt—Sternberg’s geometric approach to Hamilton equations is based on the idea to
understand them as equatidos sections of the prolonged manifoldy — X. Namely,

a sections : U — J1Y of the fibred manifoldr; is called aHamilton extremabf the
Lagrangian if

§*izd6, = 0 foreveryrs-vertical vector field; on Jy. (3.5)
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Eq. (3.5)represent tnfirst-order PDE for the componen®’, §7) of sections ofry; they
are calledHamilton—De Donder equation®ne can easily see thiity is an extremal of.
thenJ1y is its Hamilton extremalOn the other handy Hamilton extremal generally need
not be of the form of a prolongation of an extremalthis sense, the Hamilton theory is an
extensiorof the Lagrange theory.

Theorem 3.1(Goldschmidt and Sternbefg0]). If A satisfies the condition

2
det( 2L ) 20 (3.6)
8yj8yk

at each point of/1Y, then every Hamilton extremal afis of the forms = J1y, wherey
is an extremal of..

Consequently, provided thregularity condition(3.6)is satisfied, the sets of extremals and
of Hamilton extremals of are inbijectivecorrespondence, i.e., the Hamilton—De Donder
equations arequivalentwith the Euler—Lagrange equations, and this bijection is realized
via theJ* prolongation mapping.

The concepts of Hamiltonian, momenta and Legendre transformation are obtained with
help of the Poincaré—Cartan fory). Namely, we can write

oL oL
0p=\L—-—»7 —dy’ Ao, 3.7
and put
L . L
H=—L+—)7, l=—. 3.8

In analogy with mechanics, the functioHsandpé, 1<j<n1<o0 <m,arecaledthe
Hamiltonianandmomentaf A. Obviously,if the regularity condition(3.6)is satisfied then

'y v = &y, ph) (3.9)

is a local coordinate transformation ahtY; it is called Legendre transformation. Writing
the Hamilton—De Dondegquations (3.5in the Legendre coordinates one gets them in the
familiar form

9y 9H  op,  oH

- = —, - = ——, 3.10
axJ apl axJ ay? ( )

We remark that, contrary t8.1), the decompositio3.7) of 6, into a sum of two terms

is noninvariant with respect to fibred transformations. This means, in particular, that the
HamiltonianH (respectively, the-form Hwg) is defined only locally. However, a concept

of a “global Hamiltonian” can be obtained easily; suchraform is called arextended
Lagrangian and its role in the Hamiltonian setting is analogous to that of a Lagrangian in
the Lagrange theory (for more details $é8], for higher-ordef37]).
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3.2. Higher-order Lagrangians

The above mentioned Goldschmidt—Sternberg’s setting for Hamilton theory in fibred
manifolds has been generalized to the case of Lagrangians of an arbitrary aiakéng
the period 1980-199(1,8,12,15,17,22,23,30,35-37,52,57]

Consider a Lagrangian of orderi.e., a horizontak-form A on J"Y. In a fibred chart,

A=Lwoy, L=L(x"y°, Yo Yijps s Yhjpei)- (3.11)

As pointed out already by De Donder in 198@@], one can assign tb ann-form

r=1 /r—k-1 9L
1
60, = Lwo + < Z (-1 dpldPZ .. dplay(r—) wcj?l"'jk N i, (312)
k=0 =0 J1-- JkP1prt

defined onvy,_1 = ”27171 o(V) C JZ~1y; itis called thehigher-order) Poincaré—Cartan
equivalent of.. Based upon this form, Shadwick obtained5i] a direct generalization of
the first-order Hamilton—De Donder theory, now callechl Hamilton—De Donder theory
It can be summarized as follows: a sectboof the fibred manifoldry,. 1, passing iz, _1,
is called aHamilton extremabf A if

§*ig d6, = 0 for everyra,._1-vertical vector field on Vo, _1. (3.13)

Eq. (3.13)which are first-order PDE) are callethmilton—De Donder equation$he point
is to study their relation with the Euler—Lagrange equations which are PDE of ordier 2
sectionsy of 7,

Jz“ly*i,zr_lgdex =0 foreveryr-vertical vector field onY. (3.14)

For the purpose of the next theorem, let us denoteyby-[ ¢;] the numberof all different
sequences arising by permuting the sequence. ., g;. It holds

s!

[q1---gq5] = PR
i) ---i,!

whereiy is the number of the integeksin the sequencey, . . ., g;.

Theorem 3.2(Shadwick[57]). Letx be a Lagrangian oY, V C Y a fibred chart. On
Vo-_1 consider the Poincaré—Cartan equivalént(3.12)of A, rewritten in the form

0. = —Hawo + pl dy” Aw; + pldy) Awi+ -+ pd TN dyT L Ao
(3.15)

where

r—k—1

o ;
pFi = Z (=1 dp,dp, - 'dpla o
=0 Yjrejuprepii

oL
, O<k=<r-1,

:
H= =L+ pl 55 g (3.16)
k=1
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Consider the family of matrices

1 92L
1o i 1oy ) (3.17)
JreesJar=sWPrals PslPL = PrY Oy (priaops OV prpr)

wherer <s < 2r — 1,theo, j1 < --- < ja,— label columns and, p; < --- < p;, label
rows, and the brackets - - ) denote symmetrization in the indicated indices. If ranks of all
of these matrices are maximal then the system of functions

x’? yav )’71,"-7)’71...]‘,717 pél.“'/r’ p;lylv ,]15 t 5,]}’ (318)
forms a part of a coordinate system on W, and every Hamilton ext@pesdsing inV, _1
is of the formmry,_1, 0 8 = J"y, wherey is an extremal of.

Shadwick’s regularity condition has been formally geometrizefilih30} in these pa-
pers a geometric version of the matri¢@sl7)by means of bilinear forms (respectively,
equivalently, by a linear mapping) was given.

The functionsH and p’s are called aHamiltonian and momentaof the Lagrangian
A, and coordinates based ¢8.18) are calledLegendre coordinatedn any such coor-
dinates Hamilton—De Dondexquations (3.13)ake the following “canonical” form (cf.
[8,10,22,37,57}

) opi M aH
e

, (3.19)
where 0< k < r — 1, and in the second set of equations, summation otzes place.

3.3. Problems

The above mentioned approach to Hamilton theory is considered more or less standard
within the calculus of variations. However, unfortunately, it suffers from many inconve-
niences and problems both from the point of view of mathematics and physics. Let us
mention some of the most serious ones.

3.3.1. Effects of nonuniqueness in higher-order

Geometric studies of Poincaré—Cartan equivalents for Lagrangians oforde? in
field theory resulted in a striking result: formufd@.12) for 6, generally doesiot give
rise to aglobally defined form orv% ~1y. A “globalization” is possible, however, is paid
by nonuniquenessThere appeared a lot of papers dealing with this problem and provid-
ing different constructions of global higher-order Poincaré—Cartan forms; we refer, e.g.,
to[8,11,12,15,21,27,29,35lt should be stressed that, on the other hand, within a global
variational theory on fibred manifolds based upon the concept.epagean n-fornfn =
the dimension of the base manifak), developed by Krupka since 1971, “true” (global)
Poincaré—Cartan forms appear naturally as special cases of more depzgean equiv-
alents of a Lagrangiaf31,32,38,41] cf. also[21,51,53] Also, the role of the local form
6, is clarified. Let us recall some of the results on Lepageforms we shall need later.
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Lets > 0. Ann-form p on J*Y is called aLepagean n-fornfof order § if his dp = 0
for everym,1 o-vertical vector fields on J5+1y . The horizontal partp of p is ann-form
onJ*t1y i.e., aLagrangianof orders + 1. We denote

A=hp, A=Lawp, (3.20)

and say thap is aLepagean equivalerf the Lagrangiark. Conversely, it can be shown
[35,41,54]that every Lagrangian has a (global) Lepagean equivalent.
Theorem 3.3(Krupka[35,41). The following conditions are equivalent:

(1) pis a Lepagean n-form of order s
(2) The(n + 1)-form p1 dp is ms41,0-horizontal
(3) In every fibred chartV, ¢), v = (x*, y?),0onY,

TP =6+ dv+ o, (3.21)
wherev is a contact(n — 1)-form, andu is an n-form which is at leag-contact

The splitting(3.21)is, in general, not coordinate independent. Therefore, in higher-order
field theory, for a global Lagrangian one generally has not a global associated Poincaré—
Cartan equivalerst, . On the other hand, the forms

O =7+ p1p =6, + prdv (3.22)

represenall global Lepagean equivalents dfwhich are at mosi-contact
If o is a Lepagean-form then

w¥1,dp = Ex + F, (3.23)

wherekE, is a 1-contactr,1 g-horizontal(n 4+ 1)-form, andF is an(n + 1)-form which
is at least 2-contactt), is called theEuler—Lagrange fornof the Lagrangiark; in every
fibred chart,

9 s+1 9L
E, = (3 ~ Z(_l)ldpldpz . "d”’av—) ®° A wo, (3.24)
y =1 Ypipa-pi

i.e., components aof, are theEuler—Lagrange expression&pparently, ifa is defined on
J"Y then its Euler—Lagrange form is of order 2r. Comparing(3.23) with (3.22) and
(3.21)one can see that

p1d6; = p1dp = p1dO = Ej, (3.25)

i.e., contrary t@,, the formp4 dé, is definedglobally, and E, is uniquelydetermined by
the Lagrangian. (not depending upon).

Going back to the Hamilton—De Donder theory, we have for a higher-order Lagrangian,
on the Lagrangian side, due {8.25), unique, globaEuler-Lagrange equations

J¥Yy*i 20, dO =0 for everyr-vertical vector field: onY, (3.26)
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and, on the Hamiltonian side, eitherany localHamilton—De Donder equations, among
which there are the following equationgiquelydetermined by the Lagrangian,

§*iz do, =0 for everymy,_1-vertical vector field:, (3.27)

or global Hamilton—De Donder equations of the form

8*i d® =0 for everyr,, _j-vertical vector field onJ2 ~1y, (3.28)

which, howevergdepend upon an auxiliary terpy dv.

Consequently, one could expect that also the regularity condition and the Legendre trans-
formation should depend upen dv. There is, however, the following interesting and rather
striking result due to KrupkgB6] (later obtained also by Got4#2]), saying thategularity
does not depend upon the tegmdv. More precisely,

Theorem 3.4 (Krupka[36]). Let A be a Lagrangian of order r. Consider its Lepagean
equivalent® (3.22)on Vo,_1, and set

O =—Hoo + pl, dy* Awj + pl dyf Ao+ 4 i T YL Ao

2r—2
+ Y gty Ao, (3.29)
k=r
where
okt 9L o
PRI = Y (W dpydyy o dy g+, Osk=r-1,
=0 Yjrjeprepii
r 2r—1
S M A D L @30
k=1 k=r+1

Letx € Vo._1 be a point. If the Shadwick regularity conditions in a neighbourhood W
of x are satisfied then the system of functions

XY Y e Y g PR PR LS < (3.31)

is a part of a coordinate system on W, and every Hamilton extrémpassing in W is of the
formmo._1, 08 = J"y, wherey is an extremal of.

Any local coordinates on/# "1y based (3.31) i.e., (x',y7,¥%, ... )%
13{}""", ceey ﬁ(’}, z’), wherez’’s are arbitrary, are calledegendre coordinatesf the La-

grangiani. Unfortunately, in general,egendre coordinates do not provide Hamilton—De
Donder equations in a “canonical form’since the formp; dv (i.e., the functiongJ* /'
in (3.29) and (3.3Q)may depend upon the additional coordinate functiohsompleting
(3.31)to a chart.

The fact that for higher-order Lagrangians there arise many different possibilities for
Hamilton—De Donder equations which are not completely determined by the Lagrangian,
as well as “bad” properties of the above higher-order Legendre transformations (namely,
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that one has not enough momenta to create a new chart, and that, generally, Legendre
coordinates are not useful for obtaining Hamilton equations in a “canonical form”), have
been considered very strange and unsatisfactoryyaf,17,22). They even led Dedecker

to express his doubts about Hamilton theory for higher-order Lagrangians. In his opinion,

it is impossible to create a satisfactory Hamiltonian counterpart of Lagrange theless

the meaning of Hamilton equations, regularity, and Legendre transformation is properly
understood7].

3.3.2. Equivalent Lagrangians

Another unsatisfactory point concenh® role of equivalent Lagrangiams Hamiltonian
field theory[56]. Recall that two Lagrangians; and A, are calledequivalentif their
Euler-Lagrange forms coincide, i.e., if (possibly up to a projection)= E,,. Itis known,
however, that equivalent field Lagrangians (even of the same order), can differ with respect
to the property ofegularity. To illustrate this explicitly, consider the following example
[56]. Take the fibred manifold = R2 x RZ over X = R? with canonical coordinates
denoted by(x, y, u, v) and(x, y) onY andX, respectively. O 1(R? x R?) consider the
Lagrange functions

2 Ly = u)zc + Uxvy — UyUy. (3.32)

Ly =ug,

It is easy to see that they are equivalent. However, checking the regularity cor{@itgn

we getthat. is regular whilelL1 is not. This means that the Hamilton—De Donder equations
8*ig d6,, = 0 are equivalent with the Euler—Lagrange equations (in other words, can be
alternatively used to solve the extremal problem), while the Hamilton—De Donder equations
8*ig d6,, = O are “constrained” and cannot be used to solve the original extremal problem
in a straightforward way. Thus, although the Lagrangiané3iB2) are equivalent their
Hamilton equations aressentiallydifferent.

The above example suggests an idea that one should as$tariate Hamilton equations
with Euler—-Lagrange equations than with a particular Lagrangibtoreover, if Hamilton
equations are understoodaternativeequations describing axtremal problemthe key
point should be tehoosen the family of all associated Hamilton equations certaiost
appropriateones. When applied within higher-order mechanics, this approach led to a
generalized setting for the Hamilton theory, with a new understanding of regularity and
Legendre transformation, and their role in the theory of variational equdddngl6] A
generalization of that ideas and results to field theory is subjegecfion 4

3.3.3. Almost no “true” applications

In our opinion, the most serious point which makes the standard Hamiltonian field theory
unsatisfactory is the fact that it has almost no direct applications in physics: indeed, almost
all important physical fields agingular(e.g. the Dirac field, the electromagnetic field, the
Yang—Mills field, gravity). This means that to study physical fields, additional techniques
have to be developed and applied, namelyDirac theory of constraintsUnfortunately,
this brings new complications and troubles (@®]). On the other hand, in what follows
we shall see that within a new setting, the above mentioned “singular” Lagrangians turn
to be no more singular, and thereris need to apply constraint technigufes obtaining
Hamilton equations for them.
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3.4. Fresh ideas

Independently of the above mentioned “standard” Hamilton—De Donder theory there ap-
peared some other ideas bringing a new insight into the problem of developing a Hamiltonian
counterpart to the Euler—Lagrange equations.

3.4.1. Dedecker’'s Hamilton equations

In 1977, Dedeckej5] published a paper containing a completely different Hamiltonian
formulation of the first-order field theory. His point was to find Hamilton equations for
first-order Lagrangiangdefined oncontact elementsSince in this situation there is no
natural fibred structure, and the forms= Lwqg are not invariant, he took in place of a
Lagrangian. then-form

oL .
p:La)o+ay—qa)"/\wj—I—ZA{,ll{,Zzw"l/\waz/\wjlj2+--~
J

+ Z AL NN A0 A Wy, (3.33)
where theAéllf}zz» cees A!}l{, arearbitrary functions of the coordinates*, y?, yf;), and

the indicated summation extends only over increasing sequences of indices. Reformulating
and summarizing Dedecker’s results for fliwed case, we get the following theorem.

Theorem 3.5(Dedeckeff5]). Consider the equation
§*igp = 0 foreverymi-verticalvector fields onJly. (3.34)

Suppose that the condition

det 9L —Al 1 £0 (3.35)
8y;.’8y,‘; v

is satisfied. Then, every solutidof (3.34)which is an integral section of the ideal generated
by the n-forms

@t A 0% A wigiy, Ot A0 A0 A wiigig, ... @A A%, (3.36)

is holonomid(i.e., § = J1y), and its projectiony = 71,0 o & is an extremal of the Lagran-
gian L

We shall callEqg. (3.34)for sections annihilating3.36) Dedecker—Hamilton equations
and the conditiorf3.35)Dedecker regularity conditiann view of results mentioned above,
Dedecker—Hamilton equations represent a generalization of the Hamilton—-De Donder equa-
tions to the case when, in place of the Poincaré—Cartandgrageneral Lepagean equiv-
alent of a first-order Lagrangian is considered. The regularity condiid@b) ensures a
bijective correspondendmtweerextremaland asubset of Hamilton extremalsthe family
of integral sections 0f3.36)

As pointed out by Dedecker, the dependence of his regularity condition upon the “para-
meters”AY, brings a new possibility for understanding the role of regularity in the calculus
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of variations. Namely, for a given Lagrangidnone can pose a question whether there
existfunctionsAY, such that the conditio(B.35)is satisfied. Dedecker also illustrated this
“regularization procedure” explicitly, showing that it works in the case of a two dimensional
electromagnetic fiel{b].

3.4.2. Krupka—$tpankova’s regularity

Another approach to Hamilton theory, based on Hamilton—-De Donder equations, has
been proposed by Krupka andétinkova[43]. The idea was that the “true order” of
the Hamilton—De Donder equations must be taken into account. More precisely, for some
Lagrangians of order > 2, their Poincaré—Cartan form ig,_1 ;-projectable where
s < 2r — 1; in this case, it is apparently inappropriate to apply the standard procedure
leading to considering Hamilton equations of order-21. The problem must be better
studied as a problem of order s

In [43], Krupka and Stpankova applied their idea to an important classeasbnd-order
Lagrangianswith 5 1-projectabled, . Let us mention some of the main results. The first
point is thedefinition of regularity different from(3.6). a Lagrangian is called regular if
every its Hamilton extremal is holonomidext, the following second-order Lagrangians
affine in the second derivatives were considebeg: Lwg, where

L = Lo(x', y7,y7) + hD%x', y7)ypq (3.37)

It can be seen that the expressionloin the form(3.37)is saved with respect to fibred
transformations, and the Poincaré—Cartan fésnis projectableonto J1Y. Thus, the dy-
namical space for such extremal problemg1§ (and notJ3Y, as usually considered),

and the Euler—Lagrange equations, respectively, the Hamilton—-De Donder equations read
as follows:

le*i11§ do, = 0 for everyr-vertical vector field onY,

8*iz dgy = 0 for everyr;-vertical vector field: onJ1y. (3.38)

Although in the sense of the “conventional” regularity conditi@®17) Lagrangians
(3.37)are apparentlgingular, the following theorem holds.

Theorem 3.6(Krupka and Sépankovg43]). Leti be a Lagrangian of the forr(8.37) If
the condition

92L ank  gpki
det{ —2 o 2 ) 40 (3.39)
dy; dyy ayV ay°®

is satisfied then is regular, the Euler—Lagrange and the Hamilton—De Donder equations
(3.38)are equivalent, and the mapping

ik KooK
. : . . 9Lg ok dny
O IR L LT N A ( : :

LA il v (3.40
aye dxk ayY + 8y"> Ve (3.40)

is a local coordinate transformation ah'Y.
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Since
0. = —Hawo + pl dy” A wj +d(hyTw), (3.41)
where
L ank
H=—Lo+ 20y0 _ 200 youw (3.42)

_ay;,}’j - 3y Vi Yis

andthe momentp{} are given by(3.40) one gets Hamilton—De Donder equations expressed
in the Legendre coordinate.40)in the “familiar” canonical form
ay’  oH ap’ oH

_ , _ _H 3.43
axk  apk dx! ayY (3.43)

To summarize, Lagrangian systems defined by second-order Lagra(®2irisire natu-
rally of thefirst-order. If, moreover, regularity is understood in a more general (and geomet-
rical) way as a condition for one-to-one correspondence between extremals and Hamilton
extremals, one obtains a new regularity condit{8r89) and formulag(3.42) and (3.40)
for the Hamiltonian and momenta, which differ from the usual ones, however, contain the
standard formulas for first-order Lagrangians as a special case.

As pointed out by Krupka and &pankova, the above results directly apply to the
Einstein—Hilbert Lagrangiariscalar curvature) of the general relativity theory (for explicit
computations sej3], cf. also[28]). Thus, within this setting, gravity naturally appears as
afirst-order regulartheory (without constraints).

Later the above ideas were applied to study also some other kinds of higher-order
Lagrangians with projectable Poincaré—Cartan forms by Garcia and Mufioz Ma&jué
(cf. also comments ifiL7]).

4. A new look at Hamilton field theory

Now, we are in position to explain our setting for Hamiltonian field theories on fibred
manifolds. Inspired by Dedecker’s approach to Hamilton equaf&jnand Krupka's theory
of Lepageam-forms[31,35,41] our approach is a straightforward generalization to field
theory of ideas developed withimgher-order mechani¢sandbased upon the so-called
Lepagear2-forms(2 = dim X + 1) [44—-46]

4.1. Lagrangian and Hamiltonian systems

A (n + D-form E on J*Y, s > 1, is called adynamical formif it is 1-contact and
7 0-horizontal. This means that is a dynamical form iff in every fibred chart
E = E;0° A wp, 4.1)

whereE, are functions oV, C J*Y. A sectiony of rr is called gpathof Eif EoJy =0
(E considered as a section of the bundiet1(JsY) — J*Y). In fibred coordinates this
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equation representssgstem of m partial differential equations of order s
E;(x',y",Djy",....,Dj..;,y") =0 (4.2)

for the componentg” (x’), 1 < v < m, of .
The key-concept in the present approach is thatladd@ageann + 1)-form.

Definition 4.1. Lets > 0. Aclosed(n + 1)-forma on J*Y will be calledLepagearif pio
is a dynamical form.

In what follows, let us denote
pie = E. (4.3)

We can see thal € A% (J5H1Y).

If « is aLepageatm +1)-form andE = pi«, we also say that is aLepagean equivalent
of E.

With help of the definition of a Lepageanrform and the Poincaré Lemma the following
proposition is obtained immediately.

Proposition 4.1.

(1) Every Lepagearin + 1)-form locally equals to the exterior derivative of a Lepagean
n-form

(2) Thel-contact part E of a Lepagean + 1)-form is a locally variational forngi.e., there
exists an open covering dP 1Y such that, on each set of this covering, E coincides
with the Euler—Lagrange form of a Lagrangian

(3) If « is a Lepageann + 1)-form then the equations for paths 6f = pj« are the
Euler-Lagrange equations

(4) If @ is a Lepagean(n + 1)-form then the components, of E = pia satisfy the
identities

s+1 9E

v

_2:( Dl( ) Ji+1 JI+2"'djkaa—=0’ O<l=s+1
y]ljZ i k=l Jijei

(4.4)

Recall that(4.4) are necessary and sufficient conditions for local variationality of a
dynamical form; they are calleinderson—Duchamp—Krupka conditidi2s34].

We say that two Lepageam + 1)-forms«q andaz (possibly of different orders) are
equivalentf (up to a possible projection)

pia1 = p1ao. (4.5)

The equivalence class afwill be denoted by¢].

Definition4.2. The classd] of all equivalent Lepageai+1)-formsis called &agrangian
systemPaths of a Lagrangian system are cabettemals
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Note that the classy] containsall Lepagean equivalents of the locally variational form
E = pia. This means that the clasg]is a representative of the family ail equivalent
Lagrangianswhose Euler—Lagrange form (possibly locally) coincides with

Proposition 4.2. Let[«] be a Lagrangian systent = pj« the corresponding dynamical
form. Lets > 0 denote the minimum of the set of orders of the forms belonging to the class
[«]. The following conditions are equivalent:

(1) A sectiony : U — Y defined on an open subset U of X is an extremal.of E
(2) For everyr-vertical vector fields on Y,

sz*ijsgol = 0, (46)

whereq is any representative of order s of the equivalence dlaks

Proof. Suppose (1). Then, by definitioB,o J**1y = 0,i.e.,E,0J*tly =0,1< 0 < m.
This means that for every-vertical vector fielct onY,

T Hy¥ i E = Iy (Ee7)wo) = (Eo£%) o J*y)wo = 0.

Hence, we get for every-vertical vector fields on Y, and everyr € [«] such thatx is
defined onJ*Y,

Ty igeagn) g o = Iy i g (1)
="yt E =0,

sz*ijsga =

Conversely, suppose thatsatisfiesEq. (4.6) Taking (any) € [«] defined on/*Y, and
usingE = p1a, we get by similar arguments as aboye; J°t1y = 0. O

Accordingly,(4.6)are callecculer—Lagrange equatiororresponding to the Lagrangian
system §].

Remark 4.1 (On the order of a Lagrangian system). Let us stop for a moment to discuss
the concept of therder of a Lagrangian system. First, note that usually a Lagrangian
system of order is identified with aglobal Lagrangian on/"Y. Here,Definition 4.20f a
Lagrangian system is more general. It means in fact that a Lagrangian sysidamdy
of all equivalent Lagrangiansvhich give rise to an Euler-Lagrange form. It should be
stressed that this family contaihagrangians of all orders starting from a certain minimal
onewhich aredefined on open subseatfthe corresponding jet prolongations of the fibred
manifoldz : ¥ — X. Often, there existgao global Lagrangian: obstructions lie in the
topology ofY. Even if a global Lagrangian does exist, it is known that its order equals to
the order of the corresponding Euler-Lagrange form. The question under what conditions
a global Lagrangian iglobally reducibleto a minimal order Lagrangian (i.e., under what
conditions there exists a global Lagrangian of the minimal ordegfoiis still open (for
more details seR,25,42).

Since inageneral situation a Lagrangian system is characterized rather by a family of local
Lagrangians of different orders than by a distinguished global minimal order Lagrangian,
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the above understanding of a Lagrangian system asqaiivalence class of Lepagean

(n + 1)-forms becomes quite natural. However, one has to precise the conceptofidre

of a Lagrangian system. Apparently, with a Lagrangian system two characteristic numbers
are associated:

() The minimum of the set of orders of the forms belonging to the clagb} Proposition
4.2, this numbers, characterizes the jet prolongatiaf,Y, where thedynamicspro-
ceeds, and is directly related with the “true” order of the Euler-Lagrange form. The
corresponding Euler—Lagrange equations are PDE of ardet. We shall calls the
dynamical ordeiof the Lagrangian systen].

(i) The minimum of the set of orders of all Lagrangians giving rise to the Lagrangian
system §]: This number,g, will be called theorder of the Lagrangian systena].
Note that ifs is the dynamical order of{], one has < 2rp — 1

Note that the above definitions are concerned merely with characteristics directly refer-
ring to dynamics, hence common to equivalent Lagrangians, while distinct properties of
particular Lagrangians which are not essential for the dynamics are eliminated.

In view of the above remarks, in particular, byisst-order Lagrangian systenve shall
mean afamily of (local) equivalent first-order Lagrangians ah'Y, or, equivalently, an
Euler—Lagrange form possessiigcal) first-order LagrangiansNote that this means that
a first-order Lagrangian system is either of thwamical ordelO, corresponding t& on
J1Y, or 1, corresponding t& defined on/2Y (and not projectable ontd'Y).

Definition 4.3. By aHamiltonian system of orderwe shall mean a Lepageé&n+ 1)-form
a onJ%Y. A sections of the fibred manifoldr, is called aHamilton extremal o if

§*iza =0 for everyn,-vertical vector field onJ*Y. (4.7)

Eq. (4.7)will be then calledHamilton equation®f «.

Note that Hamilton equations are not uniquely determined by an Euler—Lagrange form
(respectively, by a Lagrangian) but depend upon the fofm o — E, i.e., the part of
a which isat least2-contact Consequently, one hasany dlfferent “Hamilton theories”
associated to a given variational problem

On the other hand, we can see that two diffetesgiagean n-forms; andp» (possibly of
different orders) give rise to treameHamiltonian system whenevepd = dp», i.e., locally,
p2 = p1+dn. In this sense, we can understand a Hamiltonian system to be the equivalence
class of (generally locally definetlepagean n-formdiffering by closedn — 1)-forms,
and we have the following terminology.

Definition 4.4. Let 1 < i < n. Ifin a neighbourhood of every point i’ Y there exists an
at most i-contacLepageam-form p such thatr = dp, we call the corresponding Hamilton
Eq. (4.7)Hamilton p;-equationsand we speak abotitamilton p;-theory.

In particular,Hamilton p1-equationsare locally based upon the Poincaré—Cartan form
®, i.e., they are the familiar Hamilton—De Donder equations.
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Hamilton po-equationsare locally based upon a Lepagean fgsre: © + w2, whereu,
is 2-contact. Hamiltorp2-equations related with first-order Lagrangians have been studied
in [49,50], second-order Lagrangians are discussg88a

Hamilton p,,-equations are locally based upon a general Lepagdarm. A first-order
case (on manifolds of contact elements) was studied by Dedfgk@ecall Section 3.4.
Higher-order Hamilton equations of this kind (on fibred manifolds) appg&6ihhowever,
only the Hamilton—De Donder cage= © is discussed.

For a Hamiltonian systeim of orders > 1, the sets of extremals and Hamilton extremals
need not be in bijective correspondence, i.e., a Hamiltonian system may possess Hamilton
extremals which are not prolongations of extremals. Moreover, in general, not every Hamil-
ton extremal projects onto an extremal. However, it is easy to show the following relations
between the sets of extremals and Hamilton extremals.

Proposition 4.3. Let[«] be a Lagrangian systent’ = pi« the related locally variational
form.

(1) If y is an extremal of E then for every Lepagean equivalesitE, the sectiod = J¥y
(where s is the order af) is a Hamilton extremal ak. Conversely, ifx is a Lepagean
equivalent of E defined oi*Y and é§ is a holonomic Hamilton extremal of then
y = 7,008 is an extremal of E

(2) For « defined on/°Y, the mapJ¢ is a bijection between the set of extremals of E and
the set of holonomic Hamilton extremalsoof

Proof. Boththe assertionsin (1) follow directly from the fact thatfoe J*y the equation
Jy*iga = 0 (for everyng-vertical€ on J*Y) depends only upon the projectid@i, o - £
of £ ontoY.

Let us show (2). By the second part of (I, is surjective. It is also injective, since if
for two holonomic Hamilton extremal$; = Jy1 anddy = J¥y» it holdsé;, = &2, we get
by (1),y1 = 75,0081 =m5,0082 = y2. a

Remark 4.2. Letus mention the geometric meaning of the Hamiktqoation (4.7)Denote

D;, = {iz|whereg runs over allrs-vertical vector fields oo v}. (4.8)

We call the ideal of differential forms osi’Y generated by the system mfformsD;, the
Hamiltonian idealrelated withe. Now, Eq. (4.7)means that Hamilton extremals identify
with integral sectionf the Hamiltonian ideal. From the point of view of the geometric
theory of differential equations, this is an extremely important property, pointing out the
geometric contentf Hamilton theoryin contrast with a usual understanding it merely

as a certain “formalism”in the calculus of variations. Moreover, in view of the above
proposition, if ] is a Lagrangian system, each of its associated Hamiltonian systems (i.e.,
Lepagearin + 1)-forms belonging to the clasg]) can be viewed as a differeaxtensiorof

the original variational problem. Consequently, in any concrete situation one can utilize the
possibility to apply additional requirements (geometrical and/or physical) to choose from
many alternative Hamiltonian systems related with a given Lagrangian system the “most
appropriate” one. This will be our task in the next sections.
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4.2. First-order Hamiltonian systems

In the sequel of this paper, we shall study in detail the case of Lepdgeari)-forms
defined orv1Y . These Hamiltonian systems are the most simple ones from the mathematical
point of view, and, moreovefrom the physical point of view they represent Hamiltonian
counterparts of all the most interesting Lagrangian systems in field thEonhigher-order
generalizations we refer {d7,48]

Leta be a Lepageatn + 1)-form onJ1Y. Using the canonical decompositionefnto
the sum ofi-contact components, 4 i < n + 1, we write

0 =E+F+G,
whereE = pia (as above)F = poa, andG is at least3-contact. We also set
a=E+F, (4.9

and call@ the principal part of . Note thata is an (n + 1)-form on J2Y, generallynot
closed

Theorem 4.1. Leta be a Lepagean + 1)-form onJ1Y . The following two assertions are
equivalent

(1) p2da =0.
(1) E satisfies the Anderson—Duchamp—Krupka conditions, i.e
0E 0E 0E 0E 0E 0E 0E
¢ - tdj—— —djdi— =0, v+ _— —2— =0,
dy” 9y CAY Yjk dy;  9y7 IYjk
J0E E
;= o =0, (4.10)
8yjk 3yjk
and F takes the form
1/0E, JE, . IE, )
F= (Z (W - W) —dj (’,")f)w” AN’ Awi + <3yﬁ —2fL | o°
/\a)‘; A w; + f},lf,la)‘; Aoy Ao, (4.11)
where
fhE—rs —aifi =0, (4.12)
and f(’w’ , ,‘,kv’ are arbitrary functions satisfying the antisymmetry relations
== B == = (4.13)

Proof. Takingé in the form(4.9), denote

E=E;0° A wg,

F = F(;iva)" Ao’ Awp + 2Fg;fw? A’ Aw; + F(J,kv’iw‘j’ A} A wj, (4.14)
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where
d_ ki _ kj,i
F(rlu - _Fvir’ thrvl - _F\)(Jrl' (415)
We get
JE 0E
podE = —2 VA W® Awg+ —wl A@° A wp,
vy vy ki
y Yk Ykl

p20F =d, F; Fi L% Ao’ Awg+ 2(diFj’i + F(’,{,)a)? Aw’ Awg
+ (& F%T + 2F), k)a) A p /\a)o+2Fg;}iwﬁ Ao’ A wg
+2F% of Ao} A wo.
Condition (1) of the theorem meapsdE + po dF = 0, and we get the following identities:

1/0E JoE ; oE . .
E( v U>+diF(’7lU=07 a—:+2diFé;f+2F&-/V=0,

ay?  ayY ¥
di FXT + Fik — FRJ =0, 2% + Fli4 Fi =0, F& 4 FKIi—0 (4.16)
ji
Hence,
(FgDsymipy = 0. (Fy)symiiy = —% zf (4.17)

where syntij) means symmetrization in the indicated indices. Let us deno;e,lbﬁl and

£17 the antisymmetric part with respect to the indigegof the F.5/ andFL{ , respectively.
Then the third equation ¢#.16)takes the form

di {7+ (FIDsymiy + f3F — (FEDsymin — 57 =0,

e., it splits (by taking its symmetric and antisymmetric pary i) to the following two
relations:

Lai (8T + 90 4 (FIBsymio — (F& sy = O,

ld (fjkl . fka) + f fél -0 (4.18)
Since, however,
oS ==L = S =g+ fls =0,

the first of the above relations becomes
FJNsymik) — (Figsymiiy = 0,
i.e., by(4.17)

0E, JE,
ayjf( Byj‘lf(
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which is one of the variationality conditior{d.10) In the second of the relatiorfd.18)
we recogniz€4.12)

Now, let us consider the second of thg. (4.16) It splits into two relations, the sym-
metrized and antisymmetrized onednv, respectively. Computing the symmetrized part,
we get using4.17) and (4.12)

1/0E JIE s . .. ..
| = + 25 | = 4 ESDsyminy + FlDsymiiy + 153 + i)
2 Byj Byj
1 (0E, 9E, L "
=—5di (—ayi(j, + oy ) +di(f) + foi) — didi /5
0E
== _dl_;?
Byij

i.e., the second of the variationality conditions. The corresponding antisymmetrized part
becomes

1 (aEa dE,

0 y}? | y}’

1 . o 1 Kii
ov — 4 ) - édl( J\’)l - f;’vj) - Edidkfo{;l’

and since the last terrﬂ;dkflfjl;i, equals 0,

. 1(0E, OE, c

Collecting(4.17) and (4.19)we can see that is of the form(4.11) as desired.
Finally, one has to utilize the first relation ¢4.16) However, substituting4.19) and
using the second and third relation(df10) we easily obtain

oo 0By _3E, 1 <8EU IE,

_ 0 g = Y 2d:d: £
ooy 2% dy" ay;.f)+ 74iJ5

—‘<ayv‘w+ Tay7

which is the first of(4.10) and we are done.
Conversely, taking” in the form(4.11) computingp; dE + p> dF, and using4.10),
(4.12) and (4.13)we arrive atpo do = 0. O

oE oE oE oE
o v v —djdk—ol_}>
Byjk

Remark 4.3. Note that the 2-contact paft of « (given by the formula$4.11)—(4.13) can
be expressed as follows:

1/0E, JE, 0Es
F=Fg—p2dp, Fp=- — CAD AW + —% A" A w;,
E — p2d¢ E 4<8y,.” ay;,>w o’ AN w; + 3yi'fw W} A
1 .. -
¢=E(fé’v]a)“ A" A wj —i—f(',k‘ﬂw” A @} A i) (4.20)

and the relation$4.12) and (4.13hold.
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Let us recall transformation properties of the contact fowﬁsw;.’ (e, y‘/’ ) and
x5, y;) are fibred coordinates defined on an open subsétbf it holds
- 50 50
(I)O' — aya v (I)U ay] a)v 8y./ v

dyV J ay} k dyV

)

(4.21)

Taking into account these formulas, one can see immediately that in thea]dlsere are
distinguished elements as follows.

Corollary 4.1. The forms H4.11)with f(j,'f;i = 0 are invariant under fibred transforma-

tions.

Consequently, to a Lagrangian system) ne can associate a family of Hamiltonian
systems with the 2-contact pafis= Fg — p2 d¢, whereg is w2 o-horizontal, i.e.,
¢ =315l N" Noy. S5 =Sl = £ (4.22)

ov vo

Corollary 4.2. Let be a first-order Lagrangian. Then putting {4.11)

o o1 2L 92L
K=o, =2 ( - ) (4.23)

4 ayfay}f B Byj oy;
one obtains a family of associated Hamiltonian systems such that
& =E+F =db. (4.24)

Proof. Forthe choicé4.23) the (anti)symmetry relations ¢4.22)are obviously satisfied.
Substituting(4.23)into (4.20)and using

oL oL
Eo = — —dj—,
dy° ay7
we get
1/ %L 3%L 3%L
F== - o’ ANo' A w; — @’ A" Aw; = prdb.
2\ 9y°ay!  9yvoy? ayy 9y} 7
So, we are done. O

Remark 4.4. First-order Hamiltonian systems are associated with Euler—Lagrange forms
defined on/2Y . This means that the family of Lagrangian systems which adfirittaorder
Hamiltoniancounterpart consists of two essentially different subfamilies:

(i) First-order Lagrangian systemsif the Euler—Lagrange form possesses (at least local)
first-order Lagrangians. Animportant example of such a Lagrangian system (behind the
scalar, spinor, electromagnetic, Yang—Mills and other physical fieldsiaty, usually
represented bgcalar curvaturgwhich is a second-order Lagrangian, however, locally
reducible to the first-order).
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(i) Aclassofsecond-order Lagrangian systerirsthis case the minimal-order Lagrangians
for E are nontrivially of ordetwo(i.e., are notreducible to the first-order). This concerns
for example all the second-order Euler—Lagrange expressions which are nonaffine in
the second derivatives of the field variables.

Hence,Theorem 4.1(respectively, formul#4.20) covers allsecond-order Lagrangian
systemsvith second-order Euler-Lagrange equations. However, in the case (i), we obtain
some simplifications. To see this, notice thatig a first-order Lagrangian then the 2-contact
part of every itdirst-order Lepagean equivaleptbecomes

pap = g) 0% A’ Awij+hETe’ A wy A wij + hg%”wg A @y A @ij,
where
i i i i g Ji g _
g(iv = _ggfl) = _gljo’ hgvj - _hzi ’ hgvj + h{tuq - 0’
i i i i jiq _
130 = B = Y, 39 49 =0
In particular, one has Lepagean equivalents whichragehorizontal i.e.,hd) = hb%" = 0

(cf. (3.33). Now, computing the principal part of the corresponding Hamiltonian system
a = dp, we get

& =db) + 2di g, 0" Ao’ Aw;+22g), + dihl )0 A oY A w;
2080 + d, Py A o} A . (4.25)
Comparing this formula witirheorem 4.Jgives us the following result.

Proposition 4.4. Every first-order Hamiltonian system associated with a first-order
Lagrangian system is of the form describedThyeorem 4.1where

- . . . .. 10E 1 92L , .

ki _ pk, Jik k, g o Jik
fcjrul - hmIJJ +hlj); + ZdPth)Ip’ Ujol - E ayi]j) + anlgay; - Zgyrv - dkh(jﬂI) .
If, in particular, « = dp, wherep is 71 o-horizontal, one has

- .3 92L 1 9L
=0 fi=

== - — 20,
ayToyy anygay o

4.3. Regularity as a geometrical concept

Definition 4.5. A sectioné of the fibred manifoldr, : /Y — X is called aDedecker’'s
sectionif §*u = O for every at least 2-contact formon J*Y.

ADedecker’s section which is a Hamilton extremaidf, « is calledDedecker—Hamilton
extremalof «. Hamilton equations, considered as equations for Dedecker’s sections, are
calledDedecker—Hamilton equations

Let us study relations between Hamilton extremals and Dedecker—Hamilton extremals
of a Hamiltonian system.
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Proposition 4.5. Leta be a first-order Hamiltonian system.dfis a Dedecker—Hamilton
extremal ofx thens = 72,1 0 & is a Hamilton extremal ok.

Proof. For ari-vertical vector fields on J1Y, denote b)é amp-vertical, o 1-projectable
vector field onJ2Y which projects ontd. Thens*iza = (2,1 0 8)*iza = 6%} jizar =
S*ién;la = 0, proving our assertion. O
If @ is the principal part of a first-order Hamiltonian systemdenote byD; the fam-
ily of n-formsis&, where& runs over allzp-vertical vector fields on/2Y. It is clear
that Dedecker—Hamilton extremals @fare those Dedecker’s sections which ixtegral
sectionsf the ideal generated [#;. Using(4.11) we immediately get thab, is locally
spanned by the following-forms:

. N . N oE . .
1= oy =0 ) =iyl = - (ay.p” -2 5&’) o no=2fll o] o
ip
1/(0F JdE, P
=iy = Epwo+ = P ad;fi ) o Ao
Np =13/3yr p @0 > <3yl-” ayip J pv) wj
oE P
+ <3y__5 -2 Uf;) @Y A . (4.26)
ij
The (invariant) choicq‘}kgi = 0 for & then simplifies they,’s to
oE ;
nh=—— —2fi7 |’ Aw;. (4.27)

Definition 4.6. We call a Hamiltonian systewm on J1Y regular if rank D; = rank V1,
and the system of local generatorsIf contains all the:-forms

o’ ANw;, 1<o<m, 1<i<n. (4.28)
We refer to(4.28)as localcanonicall-contactz-formson J1Y.

Note that by definition, every Dedecker—Hamilton extremal oégular Hamiltonian
system isholonomic up to the first-order.e.,

T,10 5= J1(1T2,0 o 3) (4.29)
Consequently, applyin@roposition 4.3we immediately get the following fundamental
property of regular Hamiltonian systems.

Theorem 4.2. Leto be a first-order Hamiltonian system.dfis regular then it holds

(1) Every Dedecker—Hamilton extremalw@projects onto an extremal & = p1«.
(2) The map/ tisabijection of the set of extremalsibf= p;a onto the set ot 1-projections
of Dedecker—Hamilton extremals of E
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Now, we shall be interested in finding explicigularity conditiondor first-order Hamil-
tonian systems.

Proposition 4.6. Let o be a first-order Hamiltonian system. Assume thatkD; =
rankV 1, and for everyrs o-vertical vector field on J2Y the n-forme & is 2 o-horizontal.
Then « is regular.

Proof. By (4.26) the condition that for everyg o-vertical vector fields on J2Y, iza is

12, 0-horizontal means that all the functlotfé are equal 0, i.eD; contains the forms
(4.27) The condition rankD; = m(n + 1) then implies that the form@.27)are linearly
independent. Hence, all the form$ A w; belong toDy, proving thatr is regular. [

In keeping notations ofheorem 4.1we have the following result.

Theorem 4.3. Leta be a first-order Hamiltonian system. Suppose that

ki —o. (4.30)
The following conditions are equivalent
(1) It holds
0E, -
det - —2f5] ] #0, (4.31)
Byij

where in the indicatedmn x mn)-matrix, (o, i) labels rows andv, ;) labels columns
(2) «aisregular.

Proof. Takinginto accoun{4.26), we can see that the assumpti¢h80) and (4.31¢nsure
that the forms)} are independent, i.e., th®; is locally generated by the forms

a.,—Zf )w‘j/\wi, l<o<m, 1<i=<n (432

o (8
o’ Nwj, Es;wo+

However, by(4.31) the matrix(aE(,/ayilV — Zf;’vj) with m rows labelled bys andmr?
columns labelled by(v, j, i) has the maximal rankn. Hence, rankD; = mn+m =
rankV 1, proving thatx is regular.

Conversely, |ff’k’ 0, we haveD; spanned by the system efforms

oE .
(ay; -2 5’5’) o’ A wj,
p

1/(0E oE P 0E,
E (222 B2 gg i ) ¥ A —2 YA w.
pw0+2<8y}’ 3y? lfpv)w wl+<av )w] @

By the regularity assumption, radk, = rankV 1 = mn+ m, which means that all the
above generators are independent. ConsequéftBi)holds. a
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Notice thatthe domain of definition ofthefunctioffﬁ' in (4.31)isan open subsetdfy.
The regularity condition(4.31) can be expressed in an equivalent form by means of

Lagrangians. Taking into account that
oL oL oL

- A d d —_—,
e~ oy Oy
we immediately get the following result.

E, =

Corollary 4.3. Interms ofany loca) second-order Lagrangian faf = pi«, the condition
(4.31)is equivalent with

92L 92L 92L 92L 92L
e oo T oy T Y\ % T e
YT0¥pg 0¥ OVpg 9V, Yp9q)j Vi %pq
92L
+didy——— —2fP4 | £0,
J 3)’1?(3)75(1 ov

where(p, ¢) means symmetrization in the indicated indices
If, in particular, E defines a first-order Lagrangian system, t{#:131)can be expressed
by means ofany loca) first-order Lagrangian for E and takes the form

92L 92L
det + +4fP4) £0.
dypdyg  dygdyy

Hence, using the notations @.25) and taking into accourroposition 4.4we can see
that by Theorem 4.3the following corollary can be stated.

Corollary 4.4. Afirst-order Hamiltonian system corresponding to a first-order Lagrangian
system is regular if and only if the following conditions are satisfied

92L
dyy 9y}

RE 4 gk 4 2q, pikiP — det( —4gl — 2dkh{;{k> #0.
In this way, we obtain the following assertions in the first of which we recognize

Dedecker’s regularity conditiofcf. Theorem 3.5 and the second one is a generalization
of Krupka—Sépankova regularity conditiorheorem 3.5

Corollary 4.5. Let « be a first-order Hamiltonian system such that= pj«a defines
a first-order Lagrangian system. Suppose t(at least locally « = dp, wherep is
m1,0-horizontal

(1) Letx = Lwg be a first-order Lagrangian for E. In terms of L, the regularity condition
(4.31)reads

9%L .
det| ——— — 4l ) #£0, (4.33)
ay; Byj

whereal, (x, y?, yp) are functions satisfyingt}, = —All, = —Al_.
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(2) Letd = Lwg be a second-order Lagrangian for E. Dendte= Lo + h';,'yﬁ, where the

functionsLg andh‘;' do not depend on thef;'s. In terms ofL the regularity condition

(4.31)takes the form

2Lo - oh%  an)  anl
det 0 _gFo o v Al ) +£0, (4.34)
dyy 9y} dy;  9y”  9y°

whereAij,v(xk, P, y,’;) are functions satisfyinggv = —Aii,,, = —Agg,andc?k denotes
the operaton/dx* + y}a/dy".

Proof.
(i) By Proposition 4.4and formula(4.25) we havef),kU =0, and

a =do, + deg(irkva)a Ao’ Ao+ 4g2uw0 A a)‘j’ A w;.
Hence (4.31)becomes the conditiof#.33)with

Al g 9°L 3°L
ov go‘l) - 2 aylaay}) ay]gaylv

—2fhJ. (4.35)

ov

(i) If L, is afirst-order Lagrangian equivalent with we have

i 3. pi i _ Of
Li=L—dif ' =Lo—d; f", hy = —.

ayy

- . O
SubstitutingL; into (4.33) we get(4.34)
Recall that every Lagrangianon J1Y has a (global) Lepagean equivalent
n 2 k
1 "L
K _ Z o

S (&) T (4.36)

Thisn-form, discovered by Krupka in 19773@3], cf. alsq[3]), is referred to aKrupka form
of A. It has the following important propertypg\? = 0if and only if the Euler—Lagrange
form E, identically vanishesNote that the Poincaré—Cartan fotin doesnot possess a
similar property.

Corollary 4.6. Consider a Lagrangiar. on J1Y and its Lepagean equivalemf. The
Hamiltonian systery = dpiC is regular if and only if

2 2
det( 0°L + L );eo, ie, det(aE”>;Ao. (4.37)

dyf dy;  dy;0y7 ayji
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Proof. We can see immediately that fer= dpf, (4.30)is satisfied. Hence, the assertion
follows from Theorem 4.2&andCorollary 4.3 since in this case,

1 8L 92L . 1 8L 9%L
ggv =a - Agv = 48311 =5 -
Y v ’ Y v ’
8 Bquayj ay; By;-’ 2 8y;78yj ay; 8y;’
(4.38)
and by(4.34) £/ =o. O

Note that sincg‘;’vj = 0, the principal par& of the Lepageaiin + 1)-forma = d,oiC is
(cf. (4.20)

1/0E, OJE, 0E,
da=E;0° Nog+ = | — — W’ AN’ Awj + —— @° AoY A w;
g 0 4<8y£’ ay;’) LAy e

Another distinguished Lepagearform considered by Carathéodd#j is

1 JL oL
C 1 o n 0,
= Ldx™+ L)A- A Ldx" + —a
& LH( ! ay?‘“) ( ) ayiJ"‘”)
1 oL oL
=Lwyg+ —w o’ A" Aok (4.40)

AW+ ——
ay? ) By;-’ oYy
In this case, we immediately obtain the following corollary.

Corollary 4.7. Consider a Lagrangiar. on J1Y and its Lepagean equivalemf. The
Hamiltonian systery = dpf is regular if and only if

92L 1 (9L L dL OL
det e T e T nio " 75 0. (441)
0y; E)yj 4L \ 9y; Byj 8yj ay;

Remark 4.5. For a given Lagrangian system, formfa31)represents many “regularity
conditions”, dependent upon auxiliary parameters. As se@oiollaries 4.5 and 4,®ne

may choose in place of these parameters functions defined by a Lagrangian. In fact, at
least locally, many different choices are possible, leading to various regularity conditions
which involve only a Lagrangian. In this way, e.g., the regularity condi®83) covers
the“standard” regularity condition(3.6)for A%, =0, the conditior(4.37)for AL, given

by (4.38), the Krupka—Stpankova conditior3.39)for A%, = 0, but also the condition
(4.41) or, e.g., the following conditiongl9]:

92L 92L . 92L 92L
det(k——v —(h—Dmv | #0 for Al =k | 5 - —= ],
Z)yj ay; ay; Byj ay; Byj ayj ay;

(4.42)
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det 9%L 3L N 3L N a3L 3L 40
dy7 ay! Bxiay"ay]”- dx/ay°dy! Bxiay”ay;-’ dxJayvay?
. 3L 3L 3L 3L

for Ay =y~ s T (4.43)

ax'dy Byj dx7/9y? dy; ax'dy ayj dx/ 3y dy;
or

det 9L d L +d L +4 L d L #0
ayray?  laycayy - aycayy T layvay? Y ayvay?
. 82L 92L L 92L - 9°L

for AY =d; (4.44)

—d; —d; +d; .
! ay“ayﬂ‘; / dy°ay; ! 8y"8y7 J dyvoy?

Obviously, other conditions can be generated in a similar way.

5. Legendre transformation revisited

Consider aegularfirst-order Hamiltonian system Then, by definition, all the canonical
1-contactn-forms w® A w; belong to the exterior differential system generatedIRy
However, the generators @1, naturally associated with fibred coordinates (i(é.26),
are of the form ofinear combination®of the w® A w;’s. In this sense fibred coordinates
are not “canonical”. In what follows our aim is to constrmeiw coordinatesn which the
formsw? A w; appear as a part of the naturally associated generatblience, (in the sense
of the theory of differential systems) such coordinatesaaiaptedo D;.

Definition4.7. Leta be aregularHamiltonian system oii'Y such thai is, 1-projectable.
Let (W, x), x = (x', y°, p.) be a chart oY such thai(x, y°) are local fibred coordi-
nates onY, and the canonical 1-contaetforms w® A w; coincide with the generators of
D, naturally associated with the coordinajés i.e.,

ia/apé& =0’ A ;. (445)

The chart(W, x) will be called aLegendre chastand (x, y?, p.) are calledLegendre
coordinatesassociated with the regular Hamiltonian system

We shall study existence of Legendre charts. To this end, we keep notations used so far.

Theorem 4.4. Leta be a regular Hamiltonian system oft Y associated with a first-order
Lagrangian system. Lat € J1Y be a point. Suppose that in a neighbourhood W, of x

a=do, p=60+u, (4.46)

where is a Lagrangian for E defined on W, ang , « is an at leas-contact n-form such
that

poi =gl 0’ AN’ Awjj, g), =—gh, =—gl.. (4.47)
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whereggv are functions onry o(W). Put
oL
= 97

i

P — 4gl ¥V, (4.48)

Then(W, x), whereyx = (x', y°, p!), is a Legendre chart fow.
Proof. First, notice that by assumptiorisjs projectable onto1Y. Next, we show that the
matrix (dp;, /dy;) is regular onW. From(4.48) we obtain

apL 3°L

= —4gll 4.49
8y}’ 8y;78y; Bov ( )

Sincew is regularCorollary 4.5gives that the above matrix is regular, proving th&t x),
x = (', y°, piyachartonsty.
It remains to show that conditiq@.45)is satisfied. Using4.48) we can write

p=—Hwo+ pydy” Awi+n+ ps, (4.50)
where

n=gl,dy’ Ady’ Awj, (4.51)
u3 is at least 3-contact, and

H=—L+phy] +280,57y}- (4.52)
Now,

a = —dH A wo+dp. Ady” A w; +dny— padn. (4.53)

Computingia/apééz, and taking into account that, by assumptigmjoes not depend upon
the p’s, we immediately get

oH 0H
ia/apg& =——wo+d’ "o = <y,” - —) wo + 0% A w;.

apt Iy
However, by(4.52) and (4.48)
dH AL o Loy k.p OV
opp o, 0 T Pvapy TG
oL\ 9y,
o k k] k o
o a0k 0 _ 95 k _ o 4.54
Vi +<Pu+ 8upYp ay,g> o Vi (4.54)
Hencej; ;,; & = ®” A w;, as desired. O
Note that by(4.54) the matrix
3°H
< _ ) (4.55)
plop}

is regular and inverse to the mat(i.49)
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Definition 4.8. We call the functiong? (4.52)andp’. (4.48)theHamiltonianandmomenta
of «, respectively.

Remark 4.6. Formulas(4.48) and (4.52jor a Hamiltonian and momenta can be equiva-
lently expressed in terms ofsecond-order Lagrangiaequivalent withZ. Using notations
of Corollary 4.5and its proof, we obtain

ok ik
dLo dfS  omh (ahg 4k ) "
ayv ov k>

; ik jk
dLo , off anky ,  [onh K\ oo

8y7Yj ax/  9xk Yi — W_Zgau Vi Vi (4.56)
If, in particular, L is of the form(3.37) we havef/ = hi(j,y;’, and the above formulas take
the form

ik ik ki
dLo ok [onk  ohy W\
el e B
8yj ax ayv ay°
jk
dLo dh! -
H=—Lo+ 5y 7 - (# + ngl(v) Y7V (4.57)
J

where we recogniz€3.40) and (3.42Jor gﬂv =0 (i.e., forp = 6,).

In Legendre coordinates, we g}, spanned by the following-forms:

) R 0H
Ljopl & = —@wo +dy? A wj,
. ~ oH 3g2u aggp 8gg*u ag,i(jm P i
(4.58)
If dyn = 0, the generators d?; become
IH - H ;
_Ewo+dy A w;, 3y wo +dpl A w;. (4.59)

Hamilton equations in Legendre coordinates thus read as follows.

Theorem 4.5. A Dedecker’s sectiod : U — W is a Dedecker—Hamilton extremal of
(4.46) and (4.47iff it satisfies the equations

y’ 0H
axi  apt’
apl

9H  0g) oH ag)  agd . agd \ oH oH
07 %800 08 | (%8 T8ov | T8po ) OF O (4.60)
axi N axt ypl ays  dyP Ay | apy, gp)
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If dn = 0, (4.60)read

ay? oH ap! oH
ax! opL. ax! ay°

In view of Theorem 4.4we can state the following definition.

Definition 4.9. Leta be a regular Hamiltonian system dhY associated with a first-order
Lagrangian system, le¥ c J1Y be an open set. We say thatadmits Legendre trans-
formation on Wif & = dp for a Lepageam-form p on W such thatpop = p2p for

a w1 o-projectable formg on W (i.e., locally, p2p = govo® A w” A wij, Wheregs, are
functions onry o(W)).

5.1. Strong regularity

Let us consider Hamiltonian systems @hY, associated with first-order Lagrangian
systems. We have seen that in this case regularitygqpfaranteebijective correspondence
between extremals of E and thg 1-projections of Dedecker—Hamilton extremalsof.e.,
those solutions of the Hamilt@yuations (4. Avhich annihilate all at least 2-contact forms.
Now, we shall study under what conditions there arisieifemtive correspondence between
extremals and Hamilton extremalgitegral sections of the Hamiltonian ideB), related
with «).

Definition 4.10. A Hamiltonian systena will be called strongly regularif Hamilton
extremals ofx are in bijective correspondence with extremal#of pic.

A Lagrangian systemill be calledstrongly regularif it has a strongly regular associated
Hamiltonian system.

Proposition 4.7. Every strongly regular Hamiltonian system is regular

Proof. Indeed, since every Hamilton extremabds of the forms = J1y, every Dedecker—
Hamilton extremab of « satisfiesrz 1 0§ = J1y. This means that for alt andi, §*»° A
w; = 0, i.e., all the canonical 1-contaetforms belong tdD;. ConsequentlyD; is locally
generated by the form@.32) Since the forms;} in (4.26) must be linear combinations
of the canonical 1-contaet-forms, the conditiong4.30) and (4.31pf Theorem 4.3are
satisfied, proving that is regular. O

From Theorem 4.4we obtain the following fundamental result which gives us another
geometric meaning of Legendre transformations. Roughly speaking, it saydahmito-
nian systems which admit Legendre transformationsétesrstrongly regular or “almost
strongly regular” (a strongly regular Hamiltonian systems appears by modifying the term
u3which, however, does not enter into the corresponding Euler—Lagrange equations). Thus,
one gets aharacterization of Lepagean forms for which Hamilton and Euler—Lagrange
equations are equivalent
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Theorem 4.6. Let « be a Hamiltonian system admitting Legendre transformation on
W c JLY.If (in the notations ofrfheorem 4.} the at leasB-contact partus of p is ,0-
projectable therx = dp is strongly regular on W

Proof. Consider Hamilton equatior#si: dpo = 0 in the Legendre coordinates. The coor-
dinate expression is obtained frq;m(4.50) by contracting by the vector fieldg 9y’ and
d/dpL.. Since, by assumptioms is 72 o-projectable, g3 does not depend upon momenta,
hence, its contraction b§/dp: is 0. Thus, the corresponding setlgé&milton equations
takes the form

0y 0H
axi  dp

(i.e., the same as the corresponding set of Dedecker—Hamilton equations). However, every
sections of 1 satisfying these equations is of the fosm= J1y for a sectiony of .

In other words, every Hamilton extremal ob ds holonomi¢ which means that Hamilton
equations ofip are equivalent with the Euler—Lagrange equations. d

Corollary 4.8.

(1) Leta be afirst-order Hamiltonian system. Assume that there is an open coévihg
of J1Y such thate satisfies the conditions dfheorem 4.6on eachW,. Then « is
strongly regular, i.e., Hamilton and Euler—Lagrange equationa afe equivalent

(2) Under assumptions ofheorem 4.6 (4.60) (respectively (4.61) are equations for
Hamilton extremals ak.

(3) Let p be a Lepagean n-form osly, i.e. my 10 = 6 + 1 +dv, wherep is at least
2-contact, andb is an(n — 1)-form. Assume that is w2 g-projectable. Ifp is regular
then Hamilton and Euler—Lagrange equationsocdire equivalent

Note that regularity in (3) above means thatshtisfies regularity conditiof@.31) which
for first- and second-order Lagrangians becomes Dedecker’s regularity cori@i8si(cf.
(4.33) and the generalized Krupka-&ptinkova conditio4.34), respectively.

Remark 4.7 (On variational problems with fibre dimensiom = 1). Let us consider
first-order Lagrangian systems on a fibred manifold with= 1 (andrn = dim X arbi-
trary). This case is quite specific, since the at least 2-contact part ofggorizontal
n-form on J1Y identically vanishes (indeed, it contains wedge products of at least two
copies of the contact forms = dy — y; dx*). Taking into accounRemark 4.4 we can

see that (similarly as in mechanics) every first-order Lagrangian lhasgaefirst-order
m1,0-horizontalLepagean equivalenp, = 6,. Now, we immediately obtain the following
proposition.

Proposition 4.8. Letr : Y — X be afibred manifolddmX =»n > 2,m =dimY —n =

1. Let E be a dynamical form on?Y. Assume that E is locally variational and defines a
first-order Lagrangian system. Then there exists a unique Lepagean)-forma on J1y
such that(locally) « = dp, wherep is w1 o-horizontal, andpia = E.
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In terms of(4.20)and with the notations; = dy; — yj dx*, 2j = iy,9,jwo, We have
¢ =0, and

. de
a=0=ewAwg+ —wAwjA2; =db,
Vi
where is any (local) first-order Lagrangian fdf.
Note that for Hamiltonian systems describedfgposition 4.8the concepts of regularity
and strong regularity coincide. Moreover, one hasnéue regularity conditiorwhich
depends only on the corresponding Euler—Lagrange expression,

det<8—€> #0. (4.62)
9Yij
Similarly as inCorollary 4.5 it can be expressed by means of particular Lagrangians (pos-
sibly of different orders). Moreover, if’ andL are equivalent first-order Lagrangians, i.e.,
if L' =L +d;f', wheredf’/dy; + df//dy; = 0, then (since the latter condition gives
92 f1/dy;dyk = 0),
277/ 2
oL = o°L =8—€. (4.63)
dyidy;  dyidy;  yj
Hence, if expressed by meansafyfirst-order Lagrangian, the regularity conditi¢h62)
takes the standard for(8.6), showing that if a first-order Lagrangian satisfies the regularity
condition(3.6), theneveryequivalent Lagrangian of the same order satisfies this condition as
well. Accordingly, Legendre transformation (momenta, Hamiltonian) are determined from
anyfirst-order Lagrangian of’ by standard formulas. Note that none of these properties
is saved ifm > 1. Comparing these results with corresponding properties of mechanical
Lagrangian systems (i.e., dikh= 1, m arbitrary) (cf.[46]), we can see that the case= 1
andn > 1 is more similar to mechanics than to field theory.
A typical example of a (regular) Lagrangian system of this kind is the fanstafar
field (i.e., theKlein—Gordon equatioh

Remark 4.8 (On Hamilton po-equations). LetW < J!Y be an open set, consider a
Lepageam-form p on W, such that

(1) p is at most2-contact ; ; ; . .
(2) p2pisof the formpzp = go,w” A w” A wij, Wheregy, = —gb, = —gi,, and thegs,
are functions ofx*, y?).

Recall that byDefinition 4.4 the corresponding Hamilton equatiof&e dp = 0, are called
Hamilton po-equations

Denoter = hp = Lwo. Applying the results obtained so far to the above case of
Lepagean forms, we immediately recover the following assertions, recently projd] in
in connection with the study of Hamiltopp-equations for first-order Lagrangians.

Assume thap satisfies the regularity conditiof#.33) whereAi(i,v = 4g2v. Then

(1) The Hamiltonian systema = dp is strongly regular
(2) Hamilton equations alp and Euler—Lagrange equationsBf = p1 dp are equivalent
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(3) The Hamiltonian systenip admits Legendre transformation on W. In Legendre coordi-
nates, Hamilton equations take the fof4n60)with momenta and Hamiltonian defined
by (4.48) and (4.52)espectively. If, moreover, the n-fogh, dy® Ady” Awij is closed,
Hamilton equations take the “standard” ford.61)

From the point of view of the general Hamiltonian theory, Hamilterequations can be
viewed as a “first correction” to Hamilton—-De Donder equations (adding to the
Poincaré—Cartan forry, a “free” 2-contact term); in this sense, “higher corrections” are
represented by adding & higher contact terms, starting from a 2-contact one. However,
in view of the above results, we can see thihin the general Hamilton theory, Hamilton
p2-equations play a distinguished rolldeed, this class of Hamiltonian systems is suf-
ficiently general on one hand, and as simple as possible on the other hand for obtaining
equivalent Hamiltonian counterparts of a given variational probland constructingoor-
dinate transformationf_egendre transformatiofsanonically adapted to the Hamiltonian
differential system

For more details on Hamiltop2-equations, and their applications in the calculus of
variations and in physics, we refer[#0,50,58]

Remark 4.9 (Regularizable Lagrangians). We shall finish this paper by mentioning some
applications of general Hamilton equations in the theory of Lagrangian systems, as discussed
(from a different point of view) if50] (cf. also[5]). Given &first-order Lagrangian system

let us study the existence of relatstlongly regularHamiltonian systems. Recall that by
Definition 4.2and Remark 4.1a first-order Lagrangian system is an equivalence class,
representable by a family of local equivalent Lagrangiang'i. In every fibred chart, the
Euler—Lagrange expressiols of a first-order Lagrangian system are functiafiéne in

the “second derivatives{in particular, thed E,, /8yi‘j’ may identically equal 0). Note that in

the latter case, the existence of first-order Lagrangadiirsein the “first derivatives”,yﬁ,

is equivalentwith the requirement that theé, be functions affine in the first derivatives
well.

Taking into accountegularity conditionsfor [«] (Theorem 4.3and its corollaries), we
can see immediately thah fibred manifolds with the fibre dimension m at leagand,
of coursen = dimX > 2), to everyLagrangian system one can find local associated
Hamiltonian systems which aregular. Indeed, let de{BZL/ayfayj”.) = 0 ata pointx €

J1Y. Sincem > 2, one can find functiond.,, antisymmetric ino v) and(ij), defined in
a neighbourhood of and such that at the condition(4.33)is satisfied. However, since
the determinant is a continuous function, the corresponding matrix must be nhondegenerate
in a neighbourhood of. On the other hand, the question on the existence of a Hamiltonian
systemequivalentvith a given Lagrangian system is less trivial, since, moreover, one needs
the functionsA? , be independent of thﬁ!,’i’s.

A first-orderLagrangian systerfw] is calledlocally regularizablgf there exists an open
covering{W,} of J1Y, and for every, astrongly regulatHamiltonian systeray, defined on
W, and belonging to the clasg]Jon W,. A Lagrangian systerfi] is calledregularizableif
there exists atrongly regularassociated Hamiltonian system. Accordinglizagrangiani
is calledlocally regularizablgrespectivelyregularizabl§ if the corresponding Lagrangian
system is locally regularizable (respectively, regularizaal@). A (local) Lepagean-form
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p such thatE = p1dp = [«] and do is strongly regular is called docal) regularization
for E.

Note that regularizability is a property of tidassof equivalent Lagrangians. The ge-
ometric content of regularization consists in transferring the problem of finding extremals
(which, as sections passing Iy have no direct geometric interpretation by means of a
differential system orY) to the problem of finding integral sections of a differential ideal
generated by, .

Let us consider Lagrangians of the folin= a + bgyl + cg,,yl y wherea, bl , cav
are functions defined on an open subsetoBy (3.6), such a Lagranglan is regular if
det(cw) # 0. Thus, in this sense, every affine Lagrangian is degenerate, and the same
holds for many quadratic Lagrangians (among others the impastaatromagnetic field
Lagrangian. Contrary to that one can see immediately that for quadratic (in particular,
affine) Lagrangians in the variabl@§, similar arguments as above lead to the conclusion
thatif the fibre dimensiom > 2 then every quadrati¢respectively, affineLagrangian is
locally regularizable Consequentlyfor m > 2 every local Lagrangian oY, r > 1,
which is equivalent with a quadrat{cespectively, affindirst-order Lagrangian, is locally
regularizable and admits Legendre transformation

Evidently, foraffine Lagrangiangi.e., affine in they),’s Euler—Lagrange formjsa cor-
responding strongly regular Hamiltonian system takes the form dp with p = 6, +
gg,,a)" Ao’ A wjj, where(g('iu) is a regular matrix defined on an open suld&etf ¥ and

such thatgg,) = —gﬂv = g{,'g; the principal part of reads

1/0E, .
61=E—|—pzd,0=E—i—§<8 ’ —l—d]g(,v)w"/\a)"/\a),-—i—4g(”ww”/\w‘;/\wi

(4.64)

(cf. also(4.34), (4.10) and (4.1).)Contrary to formulas which appear in the Hamilton-De
Donder theory, moment@.48) areindependenfunctions onnlO(W) c Jly, affine in
they”’s and Hamiltonian(4.52) (in Legendre coordinates) isplynomial of degre@ in
momenta A typical example of a physical field of this kind is Bieac field (see[50] for
details).

Moreover, taking into account the Krupka for@.36), we can see thaf 1 on J1Y is
quadratic and satisfies the conditi¢h.37)then

K I
0,7 =0L+ 48)};8)}]‘:60 AW A wjk
is a(global) regularizationof the corresponding Lagrangian system.

Finally, the results presented so far give us conditions va@esond-order Lagrangians
affine in the second derivativeandgiving rise to first-order Lagrangian systerage reg-
ularizable (cf.Corollary 4.5 Theorem 4.4andRemark 4.§. In view of these results one
immediately obtains that thginstein—Hilbert Lagrangiarof the general relativity theory
(“pure gravity”) is regularizable, and its most simple regularization is exactly the one ob-
tained by Krupka and $pankova irf43] (cf. also Hdava[28]).
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